Flash Nanoprecipitation: Prediction and Enhancement of Particle Stability via Drug Structure

نویسنده

  • Zhengxi Zhu
چکیده

Flash nanoprecipitation (FNP) can generate hydrophobic drug nanoparticles in ∼ 100 nm with a much higher drug loading (e.g., > 40 wt %) than traditional nanocarriers (e.g., < 20 wt %). This paper studies the effects of drug molecules on nanoparticle stability made via FNP and demonstrates that chemically bonding a drug compound (e.g., paclitaxel) with a cleavable hydrophobic moiety of organosilicate (e.g., triethoxysilicate) is able to enhance the particle size stability. A nonionic amphiphilic diblock copolymer, poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG), is used as a model surfactant to provide steric stabilization. The experiments here show that the lower the drug solubility in the aqueous medium, the more stable the particles in terms of Ostwald ripening, which are consistent with the prediction by the LSW theory. The initial particle size distribution is sufficiently narrow and of insignificance to Ostwald ripening. To correlate the particle stability with hydrophobicity, this study introduces the n-octanol/water partition coefficient (LogP), a hydrophobicity indication, into the FNP technique. A comparison of various drugs and their analogues shows that LogP of a drug is a better hydrophobicity indication than the solubility parameter (δ) and correlates well with the particle stability. Empirically, with ACDLogP > ∼ 12, nanoparticles have good stability; with ∼ 2 < ACDLogP < ∼ 9, nanoparticles show fast Ostwald ripening and interparticle recrystallization; with ACDLogP < ∼ 2, the drug is very likely difficult to form nanoparticles. This rule creates a quick way to predict particle stability for a randomly selected drug structure and helps to enable a fast preclinical drug screen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development and evaluation of bio-nanoparticles as novel drug carriers for the delivery of Donepezil

The purpose of the present study was to formulate and evaluate donepezil loaded bio-nanoparticles for effective treatment of Alzheimer’s disease. For the preparation of bio-nanoparticles biomaterial was isolated from fruits of Carica papaya by an economic method. The biomaterial recovered from the concentrate was subjected for various physicochemical properties like color, solubility, ...

متن کامل

Synthesis and Nanoprecipitation of HEMA-CLn Based Polymers for the Production of Biodegradable Nanoparticles

The control over the size distribution and stability of polymeric nanoparticles (NPs) is crucial in many of their applications, especially in the biomedical field. These characteristics are typically influenced by the production method and the nature of the starting material. To investigate these aspects, the controlled radical polymerization of functionalized methacrylates constituted by 2-hyd...

متن کامل

Development and evaluation of bio-nanoparticles as novel drug carriers for the delivery of Donepezil

The purpose of the present study was to formulate and evaluate donepezil loaded bio-nanoparticles for effective treatment of Alzheimer’s disease. For the preparation of bio-nanoparticles biomaterial was isolated from fruits of Carica papaya by an economic method. The biomaterial recovered from the concentrate was subjected for various physicochemical properties like color, solubility, ...

متن کامل

Comparative studies of salinomycin-loaded nanoparticles prepared by nanoprecipitation and single emulsion method

To establish a satisfactory delivery system for the delivery of salinomycin (Sal), a novel, selective cancer stem cell inhibitor with prominent toxicity, gelatinase-responsive core-shell nanoparticles (NPs), were prepared by nanoprecipitation method (NR-NPs) and single emulsion method (SE-NPs). The gelatinase-responsive copolymer was prepared by carboxylation and double amination method. We stu...

متن کامل

Formation of Poly(ethylene glycol)-Poly(ε-caprolactone) Nanoparticles via Nanoprecipitation

Size control of therapeutic carriers in drug delivery systems has become important due to its relevance to biodistribution in the human body and therapeutic efficacy. To understand the dependence of particle size on the formation condition during nanoprecipitation method, we prepared nanoparticles from biodegradable, amphiphilic block copolymers and investigated the particle size and structure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2014